Scaffold の特性

PuraMatrix™ は、分子式が定義された、均一なECM類似物質である。

項目	PuraMatrix™ 合成ECM	天然ECM	合成Scaffold	PuraMatrix™の 優位性
組成	0.5-1.0% w/vの16残基ペ プチド(RAD ₁₆) 特許取得済み	コラーゲン、ファイブロネク チン、マトリゲル、死体の組 織、基底膜など	PLA、PLGA、 カーボンファイバー、 リン酸カルシウムなど	動物由来成分を含まない。 細胞培養とシグナルの再現 が可能
ファイバーのサイズと組成	直径7 – 10nm 意図しないシグナル伝達を 誘発しない。	直径5 – 10 nm 含有されるタンパク質組成が 定義できない。	10,000 – 100,000 nm 主として2次元構造	分子構造が単純で、ナノス ケールのECMをin vitro、 in-vivoで実現可能
孔のサイズ	50 – 200 nm	50 – 400 nm	20,000 – 1x10 ⁶ nm	細胞の足場材料としてだけ ではなく、細胞の封入が可 能
含水率	99.5 – 99.9%	80 – 97%	60 – 80%	水和性と栄養物質の拡散性 が高い
力学的強度	低 - 中レベル 足場中への細胞の遊走可能	低 - 中レベル	中 - 高レベル	相対的に早い細胞遊走と細 胞成長および分解

細胞のカプセル化&操作性

PuraMatrix™は、安定性に優れ、注入可能、カスタマイズも可能である。

項目	PuraMatrix [™] 合成ECM	天然ECM	合成Scaffold	PuraMatrix™ の優位 性
Scaffoldの構成	細胞周辺に培養媒体を加えるか、 生体内注入かをすることで、 ファイバーとゲルが形成される。	低温保存もしくは複雑な操 作が必要	構造が形成されており、細胞を播種し、封入することが困難。	細胞の封入に優れているため、細胞に独自の微小環境や周囲のECMを作らせることができる。
生理活性物質との混合	生理活性物質、ECMタンパク質 を添加し、用途に応じた再現可 能な3D培養を実現。	タンパク質と増殖因子のレ ベルが一定でない。	可能。 生体と同様な微小環境には ならない。	条件を一定に制御したECM 微小環境の構築を可能にす る。
細胞の接着、移動、血 管形成が可能か	可能 接着刺激細胞培養が可能。	可能	若干、可能。	細胞間の相互作用、遊走や 侵入分析を可能にする。
滅菌	フィルター滅菌	不可能な場合が多い。 材料やタンパク質を破壊す る。	ガンマ線照射は不可。通常 エチレンオキシドに限定さ れる。	フィルター滅菌の使用可。
注射注入可能か	可能。 注入量以上に膨張することはな い。	冷却時に可能。	不可	細胞と共に注入可能。生体 内導入においてゲルが形作 られる。
臨床用細胞培養	無菌性の担保かつ注射注入が可能。バイオ製品、臨床細胞増殖用に閉鎖系で培養できる。	FDAが動物成分の回避を勧告している。	ガンマ線照射による殺菌は 困難なことが多い。	注射注入可能で、操作性に 優れる。
安定性	室温で長期保存可。18ヵ月間 の温度安定性が確認されている。	天然製品は冷却保存が必要、 かつ保存期間も短い。	乾燥時のみ長期保存可。	特別な保存環境が必要なく、 長期間の安定性に優れてい る。
成形、コーティング、 シート	キャスティング、コーティング、 レイヤー化、3Dプリントしやす い。	通常一層のみ、もしくは限 られたシートのみ。	固定された形を状況に応じ た形状に切断しなければい けない。	成形が容易

3-D Matrix , Ltd

細胞回収&分析

PuraMatrix™は、研究、臨床双方への適応性が高い。

項目	PuraMatrix™ 合成ECM	天然ECM	合成Scaffold	PuraMatrix™の 優位性
顕微鏡検査	透明	透明度が低い	通常不透明	観察性に優れる。
X-線透過像	透明(映らない)	ほぼ透明	通常不透明	X-線検査の際に、影が映ら ない。
細胞の回収	細胞を回収、洗浄し、継代 もしくは再封入できる。	トリプシン、コラゲナーゼ でできる。	細胞を破壊せずに回収する のは困難。	細胞培養が容易、かつその 細胞の生存率も高い。
分子生物	目的タンパク質の単体を簡 単に検出することが可能	バックグラウンドにECMタ ンパク質が検出される。	適応しない。	ウェスタンブロッティング、 サザンブロッティング、 ノーザンブロッティングを 直接的に行える。
閉鎖系細胞培養	適応する。	材料による	適応しない。	臨床とバイオ製品用の用途 に適応可能

3-D Matrix , Ltd

生体適合性

PuraMatrix™は、生体適合性に優れている。

項目	PuraMatrix™ 合成ECM	天然ECM	合成Scaffold	PuraMatrix™ の 優位性
非免疫抗原性	抗体反応、異物反応、慢性 炎症なし。	より多くの免疫反応と炎症	異物反応、瘢痕化、酸破壊	直接比較研究において優れている。
生体内吸収性	優秀。材料・水分率が低い ため早い。	可。しかしリンパ球細胞の 活動が活発になる。	可。しかし、不正な異物。	相対的に早い。吸収速度は 様々になり、制御可能。
膨張性・吸収性	注射注入による膨張なし	膨張なし	しばしば膨張。	注入量をコントロールでき る。
増殖性	足場内での細胞移動性・増 殖性が優れている。	シグナル伝達回路が定義し きれない。	足場の構造が大きすぎるた め、増殖性が不良。	相対的に早い足場内での増 殖。